Orange: Rank

From OnnoCenterWiki
Jump to: navigation, search

Sumber: https://docs.biolab.si//3/visual-programming/widgets/data/rank.html


Pemeringkatan atribut dalam klasifikasi atau regresi data.

Input

Data: input dataset
Scorer: models for feature scoring

Output

Reduced Data: dataset with selected attributes

Widget Rank mempertimbangkan kumpulan data berlabel kelas (klasifikasi atau regresi) dan menilai atribut sesuai dengan korelasinya dengan kelas. Peringkat juga menerima model untuk penilaian, seperti linear regression, logistic regression, random forest, SGD, dll.

Rank-stamped.png
  • Select attributes from the data table.
  • Data table with attributes (rows) and their scores by different scoring methods (columns)
  • Produce a report.
  • If ‘Send Automatically’ is ticked, the widget automatically communicates changes to other widgets.

Scoring method

Information Gain: the expected amount of information (reduction of entropy)

  • Gain Ratio: a ratio of the information gain and the attribute’s intrinsic information, which reduces the bias towards multivalued features that occurs in information gain
  • Gini: the inequality among values of a frequency distribution
  • ANOVA: the difference between average vaules of the feature in different classes
  • Chi2: dependence between the feature and the class as measure by the chi-square statistic
  • ReliefF: the ability of an attribute to distinguish between classes on similar data instances
  • FCBF (Fast Correlation Based Filter): entropy-based measure, which also identifies redundancy due to pairwise correlations between features

Selain itu, kita dapat menghubungkan learner tertentu yang memungkinkan penilaian feature berdasarkan seberapa penting mereka dalam model yang dibuat learner (mis. Linear Regression / Logistic Regression, Random Forest, SGD).

Example: Attribute Ranking and Selection

Di bawah ini, kita telah menggunakan Rank widget segera setelah File widget untuk mengurangi set atribut data dan hanya menyertakan yang paling informatif:

Rank-Select-Schema.png

Perhatikan bagaimana widget menghasilkan set data yang hanya menyertakan atribut dengan skor terbaik:

Rank-Select-Widgets.png

Example: Feature Subset Selection for Machine Learning

Berikut ini adalah contoh yang sedikit lebih rumit. Dalam workflow di bawah ini, kita pertama-tama membagi data menjadi satu set train dan satu set test. Di cabang atas, data training melewati Rank widget untuk memilih atribut yang paling informatif, sedangkan di cabang bawah tidak ada pemilihan feature. Baik set data feature yang dipilih dan original dilewatkan ke widget Test & Score mereka sendiri, yang mengembangkan classifier Naif Bayes dan menilainya pada set test.

Rank-and-Test.png

Untuk dataset dengan banyak fitur, pemilihan fitur classifier Bayesian yang naif, seperti yang ditunjukkan di atas, seringkali menghasilkan akurasi prediksi yang lebih baik.



Referensi

Pranala Menarik