Hadoop: Contoh Program Sederhana: Difference between revisions
From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs) New page: Sumber: http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 Hadoop: Writing and Running Your First Project MapReduce on small datasets can be run e... |
Onnowpurbo (talk | contribs) |
||
| (5 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
Sumber: http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | Sumber: | ||
* http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | |||
* https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html | |||
==Source Code== | |||
Contoh source code WordCount.java untuk menghitung jumlah masing-masing kata dari sebuah input set. | |||
cd ~ | |||
vi WordCount.java | |||
package org.myorg; | |||
package | |||
import java.io.IOException; | import java.io.IOException; | ||
import java.util.*; | |||
public class | |||
import org.apache.hadoop.fs.Path; | |||
import org.apache.hadoop.conf.*; | |||
import org.apache.hadoop.io.*; | |||
import org.apache.hadoop.mapred.*; | |||
import org.apache.hadoop.util.*; | |||
public class WordCount { | |||
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { | |||
private final static IntWritable one = new IntWritable(1); | |||
private Text word = new Text(); | |||
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { | |||
String line = value.toString(); | |||
StringTokenizer tokenizer = new StringTokenizer(line); | |||
while (tokenizer.hasMoreTokens()) { | |||
word.set(tokenizer.nextToken()); | |||
output.collect(word, one); | |||
} | |||
} | |||
} | |||
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { | |||
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { | |||
int sum = 0; | |||
while (values.hasNext()) { | |||
sum += values.next().get(); | |||
} | |||
output.collect(key, new IntWritable(sum)); | |||
} | |||
} | |||
public static void main(String[] args) throws Exception { | |||
JobConf conf = new JobConf(WordCount.class); | |||
conf.setJobName("wordcount"); | |||
conf.setOutputKeyClass(Text.class); | |||
conf.setOutputValueClass(IntWritable.class); | |||
conf.setMapperClass(Map.class); | |||
conf.setCombinerClass(Reduce.class); | |||
conf.setReducerClass(Reduce.class); | |||
conf.setInputFormat(TextInputFormat.class); | |||
conf.setOutputFormat(TextOutputFormat.class); | |||
FileInputFormat.setInputPaths(conf, new Path(args[0])); | |||
FileOutputFormat.setOutputPath(conf, new Path(args[1])); | |||
JobClient.runJob(conf); | |||
} | |||
} | } | ||
==Compile== | |||
Asumsinya HADOOP_HOME adalah root instalasi dan HADOOP_VERSION adalah versi Hadoop yang di install, compile WordCount.java dan buat jar: | |||
export HADOOP_HOME=/usr/local/hadoop/share/hadoop/common | |||
export HADOOP_VERSION=2.7.1 | |||
mkdir wordcount_classes | |||
javac -classpath ${HADOOP_HOME}/hadoop-common-${HADOOP_VERSION}.jar -d wordcount_classes WordCount.java | |||
jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ . | |||
==Penggunaan== | |||
Asumsi | |||
/usr/joe/wordcount/input - input directory di HDFS | |||
/usr/joe/wordcount/output - output directory di HDFS | |||
Sample text-files as input: | |||
bin/hadoop dfs -ls /usr/joe/wordcount/input/ | |||
/usr/joe/wordcount/input/file01 | |||
/usr/joe/wordcount/input/file02 | |||
bin/hadoop dfs -cat /usr/joe/wordcount/input/file01 | |||
Hello World Bye World | |||
bin/hadoop dfs -cat /usr/joe/wordcount/input/file02 | |||
Hello Hadoop Goodbye Hadoop | |||
Jalankan aplikasi | |||
bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output | |||
Output: | |||
bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 | |||
Bye 1 | |||
Goodbye 1 | |||
Hadoop 2 | |||
Hello 2 | |||
World 2 | |||
| Line 157: | Line 117: | ||
* http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | * http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197 | ||
* http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197?pgno=2 | |||
* https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html | |||
Latest revision as of 09:58, 9 November 2015
Sumber:
- http://www.drdobbs.com/database/hadoop-writing-and-running-your-first-pr/240153197
- https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
Source Code
Contoh source code WordCount.java untuk menghitung jumlah masing-masing kata dari sebuah input set.
cd ~ vi WordCount.java
package org.myorg;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
Compile
Asumsinya HADOOP_HOME adalah root instalasi dan HADOOP_VERSION adalah versi Hadoop yang di install, compile WordCount.java dan buat jar:
export HADOOP_HOME=/usr/local/hadoop/share/hadoop/common export HADOOP_VERSION=2.7.1
mkdir wordcount_classes
javac -classpath ${HADOOP_HOME}/hadoop-common-${HADOOP_VERSION}.jar -d wordcount_classes WordCount.java
jar -cvf /usr/joe/wordcount.jar -C wordcount_classes/ .
Penggunaan
Asumsi
/usr/joe/wordcount/input - input directory di HDFS /usr/joe/wordcount/output - output directory di HDFS
Sample text-files as input:
bin/hadoop dfs -ls /usr/joe/wordcount/input/ /usr/joe/wordcount/input/file01 /usr/joe/wordcount/input/file02
bin/hadoop dfs -cat /usr/joe/wordcount/input/file01 Hello World Bye World
bin/hadoop dfs -cat /usr/joe/wordcount/input/file02 Hello Hadoop Goodbye Hadoop
Jalankan aplikasi
bin/hadoop jar /usr/joe/wordcount.jar org.myorg.WordCount /usr/joe/wordcount/input /usr/joe/wordcount/output
Output:
bin/hadoop dfs -cat /usr/joe/wordcount/output/part-00000 Bye 1 Goodbye 1 Hadoop 2 Hello 2 World 2