Keras-timeseries-stock-tata-predict: Difference between revisions
From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs) Created page with "Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html" |
Onnowpurbo (talk | contribs) No edit summary |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html | Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html | ||
# ''' | |||
# https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html | |||
# ''' | |||
import numpy as np | |||
import matplotlib.pyplot as plt | |||
import pandas as pd | |||
# https://raw.githubusercontent.com/mwitiderrick/stockprice/master/NSE-TATAGLOBAL.csv | |||
dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv') | |||
training_set = dataset_train.iloc[:, 1:2].values | |||
# check head | |||
dataset_train.head() | |||
# scaling | |||
from sklearn.preprocessing import MinMaxScaler | |||
sc = MinMaxScaler(feature_range = (0, 1)) | |||
training_set_scaled = sc.fit_transform(training_set) | |||
# create data with time step | |||
X_train = [] | |||
y_train = [] | |||
for i in range(60, 2035): | |||
X_train.append(training_set_scaled[i-60:i, 0]) | |||
y_train.append(training_set_scaled[i, 0]) | |||
X_train, y_train = np.array(X_train), np.array(y_train) | |||
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) | |||
# train | |||
from keras.models import Sequential | |||
from keras.layers import Dense | |||
from keras.layers import LSTM | |||
from keras.layers import Dropout | |||
regressor = Sequential() | |||
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1))) | |||
regressor.add(Dropout(0.2)) | |||
regressor.add(LSTM(units = 50, return_sequences = True)) | |||
regressor.add(Dropout(0.2)) | |||
regressor.add(LSTM(units = 50, return_sequences = True)) | |||
regressor.add(Dropout(0.2)) | |||
regressor.add(LSTM(units = 50)) | |||
regressor.add(Dropout(0.2)) | |||
regressor.add(Dense(units = 1)) | |||
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') | |||
regressor.fit(X_train, y_train, epochs = 100, batch_size = 32) | |||
# test | |||
# https://raw.githubusercontent.com/mwitiderrick/stockprice/master/tatatest.csv | |||
dataset_test = pd.read_csv('tatatest.csv') | |||
real_stock_price = dataset_test.iloc[:, 1:2].values | |||
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0) | |||
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values | |||
inputs = inputs.reshape(-1,1) | |||
inputs = sc.transform(inputs) | |||
X_test = [] | |||
for i in range(60, 76): | |||
X_test.append(inputs[i-60:i, 0]) | |||
X_test = np.array(X_test) | |||
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) | |||
predicted_stock_price = regressor.predict(X_test) | |||
predicted_stock_price = sc.inverse_transform(predicted_stock_price) | |||
# Plot | |||
plt.plot(real_stock_price, color = 'black', label = 'TATA Stock Price') | |||
plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA Stock Price') | |||
plt.title('TATA Stock Price Prediction') | |||
plt.xlabel('Time') | |||
plt.ylabel('TATA Stock Price') | |||
plt.legend() | |||
plt.show() | |||
==Pranala Menarik== | |||
* [[Keras]] | |||
Latest revision as of 01:11, 6 August 2019
Sumber: https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html
# # https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html # import numpy as np import matplotlib.pyplot as plt import pandas as pd # https://raw.githubusercontent.com/mwitiderrick/stockprice/master/NSE-TATAGLOBAL.csv dataset_train = pd.read_csv('NSE-TATAGLOBAL.csv') training_set = dataset_train.iloc[:, 1:2].values # check head dataset_train.head() # scaling from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0, 1)) training_set_scaled = sc.fit_transform(training_set) # create data with time step X_train = [] y_train = [] for i in range(60, 2035): X_train.append(training_set_scaled[i-60:i, 0]) y_train.append(training_set_scaled[i, 0]) X_train, y_train = np.array(X_train), np.array(y_train) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # train from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout regressor = Sequential() regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1))) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) regressor.add(LSTM(units = 50)) regressor.add(Dropout(0.2)) regressor.add(Dense(units = 1)) regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') regressor.fit(X_train, y_train, epochs = 100, batch_size = 32) # test # https://raw.githubusercontent.com/mwitiderrick/stockprice/master/tatatest.csv dataset_test = pd.read_csv('tatatest.csv') real_stock_price = dataset_test.iloc[:, 1:2].values dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0) inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values inputs = inputs.reshape(-1,1) inputs = sc.transform(inputs) X_test = [] for i in range(60, 76): X_test.append(inputs[i-60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predicted_stock_price = regressor.predict(X_test) predicted_stock_price = sc.inverse_transform(predicted_stock_price) # Plot plt.plot(real_stock_price, color = 'black', label = 'TATA Stock Price') plt.plot(predicted_stock_price, color = 'green', label = 'Predicted TATA Stock Price') plt.title('TATA Stock Price Prediction') plt.xlabel('Time') plt.ylabel('TATA Stock Price') plt.legend() plt.show()