R: tidytext RPJP BAPPENAS: Difference between revisions

From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs)
No edit summary
Onnowpurbo (talk | contribs)
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
install.packages("rJava")
install.packages("xlsx")
install.packages("tm")
install.packages("wordcloud")
install.packages("ggplot2")
install.packages("RWeka")
library(xlsx)
library(tm)
library(wordcloud)
library(ggplot2)


  library(tidyverse)
  library(tidyverse)
  library(tidytext)
  library(tidytext)
library(RWeka)
  library(tm)
  library(tm)
  directory <- "data-pdf"
  directory <- "data-pdf"
   
   
  # create corpus from pdfs
  # create corpus from pdfs
  converted <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF)) %>%
  docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
  DocumentTermMatrix()
 
   
# docs <- VCorpus(DirSource("data", recursive=TRUE))
  converted %>%
# Get the document term matrices
  tidy() %>%
 
  filter(!grepl("[0-9]+", term))
# dengan Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
    stemming = TRUE))
  dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
    stemming = TRUE))
 
  # tanpa Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))


inspect(dtm_unigram)
inspect(dtm_bigram)





Latest revision as of 05:20, 26 November 2019

install.packages("rJava")
install.packages("xlsx")
install.packages("tm")
install.packages("wordcloud")
install.packages("ggplot2")
install.packages("RWeka")

library(xlsx)
library(tm)
library(wordcloud)
library(ggplot2)
library(tidyverse)
library(tidytext)
library(RWeka)
library(tm)
directory <- "data-pdf"

# create corpus from pdfs
docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE))
# Get the document term matrices
# dengan Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", 
    removePunctuation = TRUE, 
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
    stemming = TRUE))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
    stemming = TRUE))
# tanpa Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", 
    removePunctuation = TRUE, 
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
inspect(dtm_unigram)
inspect(dtm_bigram)


Pranala Menarik