R: tidytext RPJP BAPPENAS: Difference between revisions

From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs)
No edit summary
Onnowpurbo (talk | contribs)
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
install.packages("rJava")
  install.packages("xlsx")
  install.packages("xlsx")
  install.packages("tm")
  install.packages("tm")
  install.packages("wordcloud")
  install.packages("wordcloud")
  install.packages("ggplot2")
  install.packages("ggplot2")
 
install.packages("RWeka")
  library(xlsx)
  library(xlsx)
  library(tm)
  library(tm)
Line 11: Line 13:
  library(tidyverse)
  library(tidyverse)
  library(tidytext)
  library(tidytext)
library(RWeka)
  library(tm)
  library(tm)
  directory <- "data-pdf"
  directory <- "data-pdf"
Line 20: Line 23:
  # Get the document term matrices
  # Get the document term matrices


# dengan Stemming
#
  BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
  BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
  dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",  
  dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",  
     removePunctuation = TRUE,  
     removePunctuation = TRUE,  
     stopwords = stopwords::stopwords("id", source = "stopwords-iso"),  
     stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
     stemming = TRUE))
     stemming = TRUE))
  dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
  dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
     removePunctuation = TRUE,
     removePunctuation = TRUE,
     stopwords = stopwords::stopwords("id", source = "stopwords-iso"),
     stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
     stemming = TRUE))
     stemming = TRUE))
# tanpa Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))


  inspect(dtm_unigram)
  inspect(dtm_unigram)
  inspect(dtm_bigram)
  inspect(dtm_bigram)
converted %>%
  tidy() %>%
  filter(!grepl("[0-9]+", term))
# converted adalah DocumentTermMatrix





Latest revision as of 05:20, 26 November 2019

install.packages("rJava")
install.packages("xlsx")
install.packages("tm")
install.packages("wordcloud")
install.packages("ggplot2")
install.packages("RWeka")

library(xlsx)
library(tm)
library(wordcloud)
library(ggplot2)
library(tidyverse)
library(tidytext)
library(RWeka)
library(tm)
directory <- "data-pdf"

# create corpus from pdfs
docs <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF))
# docs <- VCorpus(DirSource("data", recursive=TRUE))
# Get the document term matrices
# dengan Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", 
    removePunctuation = TRUE, 
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
    stemming = TRUE))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan"),
    stemming = TRUE))
# tanpa Stemming
#
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", 
    removePunctuation = TRUE, 
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
    removePunctuation = TRUE,
    stopwords = c(stopwords::stopwords("id", source = "stopwords-iso"),"tabel","pada","dan")))
inspect(dtm_unigram)
inspect(dtm_bigram)


Pranala Menarik