R: tidytext RPJP BAPPENAS: Difference between revisions
From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs) No edit summary |
Onnowpurbo (talk | contribs) No edit summary |
||
| Line 15: | Line 15: | ||
docs <- VCorpus(DirSource("data", recursive=TRUE)) | |||
# Get the document term matrices | |||
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2)) | |||
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words", | |||
removePunctuation = TRUE, | |||
stopwords = stopwords("english"), | |||
stemming = TRUE)) | |||
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer, | |||
removePunctuation = TRUE, | |||
stopwords = stopwords("english"), | |||
stemming = TRUE)) | |||
inspect(dtm_unigram) | |||
inspect(dtm_bigram) | |||
Revision as of 05:41, 6 November 2018
library(tidyverse)
library(tidytext)
library(tm)
directory <- "data-pdf"
# create corpus from pdfs
converted <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF)) %>%
DocumentTermMatrix()
converted %>%
tidy() %>%
filter(!grepl("[0-9]+", term))
# converted adalah DocumentTermMatrix
docs <- VCorpus(DirSource("data", recursive=TRUE))
# Get the document term matrices
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
dtm_unigram <- DocumentTermMatrix(docs, control = list(tokenize="words",
removePunctuation = TRUE,
stopwords = stopwords("english"),
stemming = TRUE))
dtm_bigram <- DocumentTermMatrix(docs, control = list(tokenize = BigramTokenizer,
removePunctuation = TRUE,
stopwords = stopwords("english"),
stemming = TRUE))
inspect(dtm_unigram) inspect(dtm_bigram)