Orange: Manifold Learning: Difference between revisions

From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs)
Created page with "Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/manifoldlearning.html Nonlinear dimensionality reduction. Inputs Data: input dataset Output..."
 
Onnowpurbo (talk | contribs)
No edit summary
Line 15: Line 15:
Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.
Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.


../../_images/manifold-learning-stamped.png
[[File:Manifold-learning-stamped.png|center|200px|thumb]]
 


     Method for manifold learning:
     Method for manifold learning:
         t-SNE
         t-SNE
         MDS, see also MDS widget
         MDS, see also MDS widget
         Isomap
         Isomap
         Locally Linear Embedding
         Locally Linear Embedding
         Spectral Embedding
         Spectral Embedding
     Set parameters for the method:
     Set parameters for the method:
         t-SNE (distance measures):
         t-SNE (distance measures):
             Euclidean distance
             Euclidean distance
             Manhattan
             Manhattan
             Chebyshev
             Chebyshev
             Jaccard
             Jaccard
             Mahalanobis
             Mahalanobis
             Cosine
             Cosine
         MDS (iterations and initialization):
         MDS (iterations and initialization):
             max iterations: maximum number of optimization interactions
             max iterations: maximum number of optimization interactions
             initialization: method for initialization of the algorithm (PCA or random)
             initialization: method for initialization of the algorithm (PCA or random)
         Isomap:
         Isomap:
             number of neighbors
             number of neighbors
         Locally Linear Embedding:
         Locally Linear Embedding:
             method:
             method:
                 standard
                 standard
                 modified
                 modified
                 hessian eigenmap
                 hessian eigenmap
                 local
                 local
             number of neighbors
             number of neighbors
             max iterations
             max iterations
         Spectral Embedding:
         Spectral Embedding:
             affinity:
             affinity:
                 nearest neighbors
                 nearest neighbors
                 RFB kernel
                 RFB kernel
     Output: the number of reduced features (components).
     Output: the number of reduced features (components).
     If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
     If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
     Produce a report.
     Produce a report.


Manifold Learning widget produces different embeddings for high-dimensional data.
Manifold Learning widget produces different embeddings for high-dimensional data.


../../_images/collage-manifold.png
[[File:Collage-manifold.png|center|200px|thumb]]


From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.
From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.
Example
 
==Contoh==


Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.
Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.


../../_images/manifold-learning-example.png
[[File:Manifold-learning-example.png|center|200px|thumb]]
 





Revision as of 02:22, 24 January 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/manifoldlearning.html


Nonlinear dimensionality reduction.

Inputs

   Data: input dataset

Outputs

   Transformed Data: dataset with reduced coordinates

Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.


   Method for manifold learning:
       t-SNE
       MDS, see also MDS widget
       Isomap
       Locally Linear Embedding
       Spectral Embedding
   Set parameters for the method:
       t-SNE (distance measures):
           Euclidean distance
           Manhattan
           Chebyshev
           Jaccard
           Mahalanobis
           Cosine
       MDS (iterations and initialization):
           max iterations: maximum number of optimization interactions
           initialization: method for initialization of the algorithm (PCA or random)
       Isomap:
           number of neighbors
       Locally Linear Embedding:
           method:
               standard
               modified
               hessian eigenmap
               local
           number of neighbors
           max iterations
       Spectral Embedding:
           affinity:
               nearest neighbors
               RFB kernel
   Output: the number of reduced features (components).
   If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
   Produce a report.

Manifold Learning widget produces different embeddings for high-dimensional data.

From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.

Contoh

Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing datasets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph. Then we used Scatter Plot to plot the embeddings.


Referensi

Pranala Menarik