Orange: Distance Transformation: Difference between revisions

From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs)
No edit summary
Onnowpurbo (talk | contribs)
No edit summary
Line 1: Line 1:
Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/distancetransformation.html
Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/distancetransformation.html


Transforms distances in a dataset.
Transformasikan distances yang ada di dataset.


==Input==
==Input==
Line 11: Line 11:
  Distances: transformed distance matrix
  Distances: transformed distance matrix


The Distances Transformation widget is used for the normalization and inversion of distance matrices. The normalization of data is necessary to bring all the variables into proportion with one another.
Widget Distances Transformation digunakan untuk normalisasi dan inversi dari distance matrices. Normalisasi data diperlukan untuk membawa semua variabel ke dalam proporsi satu sama lain.


[[File:DistanceTransformation-stamped.png|center|200px|thumb]]
[[File:DistanceTransformation-stamped.png|center|200px|thumb]]

Revision as of 00:51, 23 February 2020

Sumber: https://docs.biolab.si//3/visual-programming/widgets/unsupervised/distancetransformation.html

Transformasikan distances yang ada di dataset.

Input

Distances: distance matrix

Output

Distances: transformed distance matrix

Widget Distances Transformation digunakan untuk normalisasi dan inversi dari distance matrices. Normalisasi data diperlukan untuk membawa semua variabel ke dalam proporsi satu sama lain.

  • Choose the type of Normalization:
    • No normalization
    • To interval [0, 1]
    • To interval [-1, 1]
    • Sigmoid function: 1/(1+exp(-X))
  • Choose the type of Inversion:
    • No inversion
    • -X
    • 1 - X
    • max(X) - X
    • 1/X
  • Produce a report.
  • After changing the settings, you need to click Apply to commit changes to other widgets. Alternatively, tick Apply automatically.

Contoh

In the snapshot below, you can see how transformation affects the distance matrix. We loaded the Iris dataset and calculated the distances between rows with the help of the Distances widget. In order to demonstrate how Distance Transformation affects the Distance Matrix, we created the workflow below and compared the transformed distance matrix with the “original” one.


Referensi

Pranala Menarik