Text Mining: Sentiment Classifier: Difference between revisions
From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs) Created page with "Sentiment Classifier using Word Sense Disambiguation using wordnet and word occurance statistics from movie review corpus nltk. Classifies into positive and negative categorie..." |
Onnowpurbo (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
Sentiment Classifier | Sentiment Classifier menggunakan Word Sense Disambiguation menggunakan WordNet dan statistik terjadinya kata dari corpus movie review NLTK. Mengklasifikasikan ke dalam kategori positif dan negatif. | ||
==Persyaratan== | |||
* Python 2.6. | |||
* NLTK http://www.nltk.org 2.0 | |||
* NumPy http://numpy.scipy.org | |||
* SentiWordNet http://sentiwordnet.isti.cnr.it | |||
How to Install | How to Install | ||
Revision as of 02:19, 3 February 2017
Sentiment Classifier menggunakan Word Sense Disambiguation menggunakan WordNet dan statistik terjadinya kata dari corpus movie review NLTK. Mengklasifikasikan ke dalam kategori positif dan negatif.
Persyaratan
- Python 2.6.
- NLTK http://www.nltk.org 2.0
- NumPy http://numpy.scipy.org
- SentiWordNet http://sentiwordnet.isti.cnr.it
How to Install
Shell command
python setup.py install
Documentation
http://readthedocs.org/docs/sentiment_classifier/en/latest/ Try Online
Script Usage
Shell Commands:
senti_classifier -c file/with/review.txt
Python Usage
Shell Commands
cd sentiment_classifier/src/senti_classifier/ python senti_classifier.py -c reviews.txt
Library Usage
from senti_classifier import senti_classifier sentences = ['The movie was the worst movie', 'It was the worst acting by the actors'] pos_score, neg_score = senti_classifier.polarity_scores(sentences) print pos_score, neg_score