Text Mining: Sentiment Classifier: Difference between revisions

From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs)
No edit summary
Onnowpurbo (talk | contribs)
No edit summary
Line 9: Line 9:
* SentiWordNet http://sentiwordnet.isti.cnr.it
* SentiWordNet http://sentiwordnet.isti.cnr.it


How to Install
==Cara Install==


Shell command
Perintah shell


python setup.py install
python setup.py install


Documentation
==Dokumen==
 
    http://readthedocs.org/docs/sentiment_classifier/en/latest/
http://readthedocs.org/docs/sentiment_classifier/en/latest/
     Try Online
     Try Online


Script Usage
==Penggunaan==


Shell Commands:
Perintah shell


  senti_classifier -c file/with/review.txt
  senti_classifier -c file/with/review.txt


Python Usage
==Penggunaan Python==


Shell Commands
Perintah shell


  cd sentiment_classifier/src/senti_classifier/
  cd sentiment_classifier/src/senti_classifier/
  python senti_classifier.py -c reviews.txt
  python senti_classifier.py -c reviews.txt


Library Usage
==Penggunaan Library==


  from senti_classifier import senti_classifier
  from senti_classifier import senti_classifier
Line 39: Line 39:
  pos_score, neg_score = senti_classifier.polarity_scores(sentences)
  pos_score, neg_score = senti_classifier.polarity_scores(sentences)
  print pos_score, neg_score
  print pos_score, neg_score





Revision as of 02:21, 3 February 2017

Sentiment Classifier menggunakan Word Sense Disambiguation menggunakan WordNet dan statistik terjadinya kata dari corpus movie review NLTK. Mengklasifikasikan ke dalam kategori positif dan negatif.


Persyaratan

Cara Install

Perintah shell

python setup.py install

Dokumen

http://readthedocs.org/docs/sentiment_classifier/en/latest/
   Try Online

Penggunaan

Perintah shell

senti_classifier -c file/with/review.txt

Penggunaan Python

Perintah shell

cd sentiment_classifier/src/senti_classifier/
python senti_classifier.py -c reviews.txt

Penggunaan Library

from senti_classifier import senti_classifier
sentences = ['The movie was the worst movie', 'It was the worst acting by the actors']
pos_score, neg_score = senti_classifier.polarity_scores(sentences)
print pos_score, neg_score


Referensi