R Regression: Simple Linear Regression: Difference between revisions
From OnnoCenterWiki
Jump to navigationJump to search
Onnowpurbo (talk | contribs) Created page with " # Ref: http://www.sthda.com/english/articles/40-regression-analysis/167-simple-linear-regression-in-r/ if(!require(devtools)) install.packages("devtools") devtools::inst..." |
Onnowpurbo (talk | contribs) No edit summary |
||
| Line 46: | Line 46: | ||
# Residual standard error (RSE). | # Residual standard error (RSE). | ||
sigma(model)*100/mean(marketing$sales) | sigma(model)*100/mean(marketing$sales) | ||
==Referensi== | |||
* http://www.sthda.com/english/articles/40-regression-analysis/167-simple-linear-regression-in-r/ | |||
==Pranala Menarik== | |||
* [[R]] | |||
Latest revision as of 03:21, 29 November 2019
# Ref: http://www.sthda.com/english/articles/40-regression-analysis/167-simple-linear-regression-in-r/ if(!require(devtools)) install.packages("devtools") devtools::install_github("kassambara/datarium") data("marketing", package = "datarium") head(marketing, 3) data("swiss") head(swiss, 3) data("Boston", package = "MASS") head(Boston, 3) install.packages("tidyverse") install.packages("ggpubr") library(tidyverse) library(ggplot2) library(ggpubr) theme_set(theme_pubr()) # Load the package data("marketing", package = "datarium") head(marketing, 4) # Plot SMOOTH ggplot(marketing, aes(x = youtube, y = sales)) + geom_point() + stat_smooth() # Calculate Correlation cor(marketing$sales, marketing$youtube) # Computation model <- lm(sales ~ youtube, data = marketing) model # PLOT Model ggplot(marketing, aes(youtube, sales)) + geom_point() + stat_smooth(method = lm) # model summary summary(model) # confidence interval confint(model) # Residual standard error (RSE). sigma(model)*100/mean(marketing$sales)